Complex arithmetic with adjustable branch cut on HP-41

Scientific calculator program to do complex arithmetic with adjustable branch cut on HP-41. Compared to the previous version [2], it allows the user to adjust the branch cut in the complex plane, and introduces the ATAN and ATANH operators.

History

In May 1985, Frans de Vries published his complex arithmetic program for the HP-41CX [1]. I am very grateful for his work, and much of the program is based on his work. My iterations of his program, has been my pet project while in college. This version of the program, was inspired while studying contour integrals in the complex plane. It makes the branch cut adjustable.

Theory

A complex number can be converted from rectangular to polar coordinates using trigonometry

There are many choices which can be made for φ, because a complete rotation around (0 + 0j) results in the same rectangular coordinates. The function is said to be multivalued, with possible values

In this atan2(z) denotes

In calculators, a well-defined function is required. The usual choice for φ (principal value) is a value in the interval (-π,π]. In this case the branch cut is a line segment from 0 extending just above the negative real axis. Such a branch cut is at angle π compared to the positive real axis.

Common branch cuts are

  • π/2, just right of the positive imaginary axis;
  • π, just above the negative real axis;
  • 3π/2, just left of the negative imaginary axis; and
  • 2π, just under the the positive real axis

Instructions and examples

For a keyboard overlay and general instructions and examples refer to the article “Complex Arithmetic in Extended Memory for HP-41cv/cx” [2].

This program let the user specify the angle of the branch cut using the BCUT key. The program will prompt you for an angle specified in radians.

Compared to the previous version [2], the program now also implements the atan (ARCTAN) and atanh (ARCHYPTAN).

Listing

Available through the repository

Ángel Martin combined several of my focal programs from this site and compiled ROM and MOD images. They are available through GitHub.

  • Requires
    • X-Functions module on the HP-41cv
  • Available as
  • For register and flag usage refer to [2]. In addition, in this version stores the branch cut angle at register 15.

 1       LBL "CA"
2       "CA V4.01"
3       AVIEW
4       PI              ; store "snedehoek"
5       ST+ X
6       STO 15
7       RDN
8       CF 03           ; clear prefix flags (ARC, HYP)
9       CF 04
10      RAD
11      FS?C 14         ; if the "do not clear stack" flag is set
12      GTO 01          ;   then jump to LBL 00,
13      6
14      STO 00
15      XEQ 48
16      STO 01          ; clear LASTZ
17      STO 02
18      LBL 01
19      CF 10
20      CF 22
21      CF 25
22      FS? 00
23      XEQ 33
24      XEQ 10          ; display complex number (x + y.j)
25      STOP
26      ENTER^
27      LBL 02
28      "FUNCTION ?"
29      AVIEW
30      CLX
31      GETKEY          ; wait for an operation keycode
32      X=0?
33      GTO 02
34      31
35      X#Y?            ; if not the "shift" key
36      GTO 00          ;   then handle that operation
37      R^              ;   else update the shift annunciator
38      R^
39      "\01\00"
40      FS? 47
41      CLA
42      RCLFLAG
43      ASTO d
44      STOFLAG
45      AOFF
46      GTO 02

47      LBL 00          ; handle operation associated with a keycode
48      CLX
49      5
50      FC? 47          ; if "shift was active"
51      CLX             ;   then increment key code by 5
52      +
53      RDN
54      CLD
55      "OK"            ; ??
56      AVIEW
57      SF 25
58      XEQ IND T       ; call the corresponding operation
59      FC?C 14
60      GTO 01
61      ENTER^
62      GTO 02

; TOGGLE [ARC] MODIFIER, for ASIN, ACOS, ATAN

63      LBL 11          ; [ARC], key label [sigma+]
64      FC?C 03
65      SF 03
66      SF 14           ; indicate "more key strokes to follow"
67      RTN

; TOGGLE [HYP] MODIFIER, for SINH, COSH and TANH

68      LBL 16          ; [HYP], key label [sigma-]
69      FC?C 04
70      SF 04
71      SF 14           ; indicate "more key strokes to follow"
72      RTN

; TOGGLES FLAG 01, and RECALLS Z1 to X,Y

73      LBL 67          ; sorry I don't remember what the pupose of this
74      FC?C 01		;  operator is
75      SF 01
76      GTO 00

; SWITCH BETWEEN POLAR AND RECTANGULAR NOTATION
;
; rectilinear to polar coordinates
;   r = sqrt(x^2+y^2), phi=atan(y,x)
; polar to rectilinear
;   x = r.cos(phi)
;   y = r.sin(phi)

77      LBL 68          ; [RECT], key label [P>R]
78      CF 00
79      GTO 00
80      LBL 69          ; [POL], key label [R>P]
81      SF 00
82      LBL 00
83      RCL 04          ; get Z1 from the complex stack as (x + y.j)
84      RCL 03
85      RTN

; COMPLEX RECIPROCAL (1/Z)
;
; on entry : Z in X,Y registers in the form (x + y.j)
; on exit  : the result is stored as Z1 on the complex stack
;            the result is stored in X,Y in the form (x + y.j)
;            LASTZ1 holds a copy of the operation operand Z

86      LBL 12          ; [1/Z] operation

87      XEQ 09          ; push (x + y.j) onto complex stack and update LASTZ1
88      XEQ 31          ; compute (x + j.y) = 1 / (x + j.y)
89      GTO 03          ; copy (x + y.j) to complex stack, and return

; COMPLEX ENTER^
;
; on entry : Z in X,Y registers in the form (x + y.j)
; on exit  : Z is pushed up the complex stack as Z1 and Z2
;            Z is X,Y in the form (x + y.j)
;            LASTZ1 is unchanged

90      LBL 41          ; [CENTER^] operation

91      XEQ 04          ; push (x + y.j) onto complex stack
92      XEQ 11          ; move complex stack up, Z1 > Z2 > Z3 > Z4 > Z5 > Z6
93      SF 02           ; "no stack lift"
94      RTN

; COMPLEX CLEAR STACK
;
; on entry : n/a
; on exit  : Z1..Z6 on the complex stack are set to (0 + 0j)
;            LASTZ1 is unchanged

95      LBL 48          ; [CCLST] operation

96      RCL 00
97      ISG X
98      ""
99      ST+ X
100      E3
101     /
102     3
103     +
104     SIGN
105     CLX
106     LBL 34
107     STO IND L
108     ISG L
109     GTO 34
110     CF 02           ; no "no stack lift"
111     CLST
112     RTN

; COMPLEX CHANGE SIGN AND COMPLEX CONJUGATE (Complement)
;
;     -(x + y.j) = -x - y.j  (change sign)
;     (x + y.j)* =  x - y.j  (conjugate)
;
; on entry : Z in X,Y registers in the form (x + y.j)
; on exit  : the result is stored as Z1 on the complex stack
;            the result is stored in X,Y in the form (x + y.j)
;            LASTZ1 holds a copy of the operation operand Z

113     LBL 42          ; [CHSZ] operation
114     SF 10
115     LBL 47          ; [COMPLZ] operation

116     XEQ 04          ; push (x + y.j) onto complex stack
117     FS? 10
118     CHS
119     X<>Y
120     CHS
121     X<>Y
122     GTO 03          ; copy (x + y.j) to complex stack, and return

; CLEAR Z1
;
; on entry : Z in X,Y registers in the form (x + y.j)
; on exit  : Z is pushed up the complex stack as Z1 and Z2
;            Z is X,Y in the form (x + y.j)
;            LASTZ1 is unchanged

123     LBL 49          ; [CLZ1] operation

124     XEQ 04          ; push (x + y.j) onto complex stack
125     CLST
126     SF 02           ; "no stack lift"
127     GTO 03          ; copy (x + y.j) to complex stack, and return

; LAST Z1
;
; on entry : n/a
; on exit  : the operand from the last numeric operation (except CHSZ)
;              is pushed onto the complex stack
;            the operand from the last numeric operation (except CHSZ)
;              is stored in X,Y in the form (x + y.j)

128     LBL 88          ; [LASTZ1] operation

129     FS? 02
130     FS? 22          ; if "no stack lift" or "input from keyboard"
131     XEQ 41          ;   then perform CENTER^
132     CF 02
133     RCL 02          ; LASTZ1
134     RCL 01
135     GTO 03          ; copy (x + y.j) to complex stack, and return

; COMPLEX ADDITION AND SUBTRACTION
;
;     (z + t.j) + (x + y.j) = (x + z) + j.(y + t)
;     (z + t.j) - (x + y.j) = (x - z) + j.(y - t)
;
; on entry : if number was entered on the keyboard,
;              then (x + y.j) as entered in X,Y registers, and
;                   (z + t.j) from Z1 on the complex stack
;              else (x + y.j) from Z1 on the complex stack, and
;                   (z + t.j) from Z2 on the complex stack
; on exit  : the result is stored as Z1 on the complex stack
;            the result is stored in X,Y in the form (x + y.j)
;            LASTZ1 holds a copy of (x + y.j)

136     LBL 51          ; [C-] operation
137     SF 10
138     LBL 61          ; [C+] operation

139     XEQ 07          ; get two operands, as (x + j.y) and (z + j.t)
140     FS? 10
141     CHS
142     X<>Y
143     FS? 10
144     CHS
145     ST+ T
146     RDN
147     +
148     GTO 03          ; copy (x + y.j) to complex stack, and return

; COMPLEX MULTIPLICATION AND DIVISION
;
;     Z2 * Z1 = (re1 + j.im1) * (re2 + j.im2) =
;             = (re1.re2 - im1.im2 ) + j.(im1.re1 + re1.im2)
;
;     Z2 / Z1 = Z2 * 1/Z1

149     LBL 81          ; [C/] operation
150     SF 10
151     LBL 71          ; [C*] operation

152     XEQ 07          ; get two operands, as (x + j.y) and (z + j.t)
153     FS? 10          ; if division
154     XEQ 31          ;   then compute (x + j.y) = 1 / (x + j.y)
155     XEQ 00          ; compute (x + j.y) * ( z + j.t)
156     GTO 03          ; copy (x + y.j) to complex stack, and return

; COMPLEX POWER OF A COMPLEX NUMBER
;
;           (x+y.j)      z    -t.phi1    j.(z.phi1 + t.ln(r1))
;     (z+t.j)       =  r1  . e        . e
;
;   where:
;         r1   = sqrt(x^2+y^2)
;         phi1 = .... x + y.j ....????

157     LBL 17          ; [Z2^Z1] operation

158     XEQ 07          ; get two operands, as (x + j.y) and (z + j.t)
159     R^
160     R^
161     XEQ 33
162     LN
163     XEQ 00          ; compute (x + j.y) * ( z + j.t)
164     E^X
165     P-R
166     GTO 03          ; copy (x + y.j) to complex stack, and return

; COMPLEX PARALLEL CIRCUIT, useful in network theory
;
;            Z1 . Z2
; Z1 // Z2 = -------    {for |Z1+Z2| <> 0}
;            Z1 + Z2

167     LBL 32          ; [CPAR] operation
168     XEQ 07          ; get two operands, as (x + j.y) and (z + j.t)
169     XEQ 31          ; compute 1 / ( x + j.y)
170     R^
171     R^
172     XEQ 31          ; compute 1 / ( x + j.y)
173     X<>Y
174     ST+ T
175     RDN
176     +
177     XEQ 31          ; compute 1 / ( x + j.y)

; COPY (x + y.j) TO COMPLEX STACK

178     LBL 03          ; [PRGM] keycode
179     STO 03
180     X<>Y
181     STO 04
182     X<>Y
183     RTN

; MULTIPLY TWO COMPLEX NUMBERS subroutine
;
;     (x + y.j) * (z + t.j) = (x + j.y) * (z + j.im2) =
;                           = (x.z - y.t ) + j.(y.x + x.t)

184     LBL 00
185     STO L
186     R^
187     ST* L
188     X<> Z
189     ST* Z
190     R^
191     ST* Y
192     ST* Z
193     X<> L
194     +
195     X<> Z
196     -
197     RTN

; COMPLEX COMMON (base 10) and NATURAL (base e) LOGARITHM
;
;     ln(x + y.j) = ln(r) + j.phi
;
;     Z1
;       log(Z2) = ln(Z2) / ln(Z1)

198     LBL 14          ; [LOG(Z)] operation
199     XEQ 08          ; get operand, as (x + j.y) and update LASTZ
200     LN              ; x=ln(M1), y=phi1
201     GTO 00

202     LBL 15          ; [LN(Z)] operation
203     XEQ 09          ; push (x + y.j) onto complex stack and update LASTZ
204      E              ; x=1

205     LBL 00
206     RDN
207     XEQ 33
208     LN
209     R^
210     ST/ Z
211     /
212     GTO 03          ; copy (x + y.j) to complex stack, and return

; COMPLEX COMMON (base 10) and NATURAL (base e) EXPONENTIAL
;
;     (x + j.y)    x              x
;    e          = e .sin(y) + j.e .cos(y)

213     LBL 19          ; [n^Z] operation
214     XEQ 08          ; get operand, as (x + j.y) and update LASTZ
215     LN
216     GTO 00          ; reuse part of  [E^Z] operation

217     LBL 20          ; [E^Z] operation
218     XEQ 09          ; push (x + y.j) onto complex stack and update LASTZ
219      E

220     LBL 00
221     ST* Z
222     *
223     E^X
224     P-R
225     GTO 03          ; copy (x + y.j) to complex stack, and return

; COMPLEX EXPONENTIATION WITH REAL EXPONENT n

226     LBL 18          ; [Z^n] operation

227     XEQ 08          ; get operand, as (x + j.y) and update LASTZ
228     RDN
229     XEQ 33
230     R^
231     ST* Z
232     Y^X
233     P-R
234     GTO 03          ; copy (x + y.j) to complex stack, and return

; COMPLEX ROOT OF REAL NUMBER n
;        __
;     Z1/         1/Z1
;     \/ Z2   = Z2
;        __
;     n /        1/n   j.(phi/n)
;     \/ Z    = M   . e

235     LBL 13          ; [Z^1/n] operation

236     XEQ 08          ; get operand, as (x + j.y) and update LASTZ
237     RDN
238     XEQ 33
239     R^
240     1/X
241     Y^X
242     STO N
243     RDN
244     2
245     PI
246     *
247     RCL N
248     X<>Y
249     R^
250     ST/ T
251     ST/ Y
252     R^
253     R^
254     LBL 05
255     FC? 00
256     P-R
257     XEQ 10          ; display complex number (x + y.j)
258     AON
259     STOP
260     FC? 00
261     XEQ 33
262     R^
263     ST+ Z
264     RDN
265     DSE Z
266     GTO 05          ; loop back to LBL 05
267     P-R
268     AOFF
269     GTO 03          ; copy (x + y.j) to complex stack, and return

; COMPLEX SINE, COSECANT, COSINE AND SECANT
;
;     sin( x + j.y) = sin(x).cosh(y) + j.cos(x).sinh(y)
;     cos( x + j.y) = cos(x).cosh(y) - j.sin(x).sinh(y)
;     sinh(x + j.y) = cos(y).sinh(x) + j.sin(y).cosh(x)
;     cosh(x + j.y) = cos(y).cosh(x) + j.sin(y).sinh(x)
;     csc(x + j.y)  = 1 / sin( x + j.y)
;     sec(x + j.y)  = 1 / cos( x + j.y)
;     csch(x + j.y) = 1 / sinh(x + j.y)
;     sech(x + j.y) = 1 / cosh(x + j.y)
;
; Flags used:
;     flag 04, indicates [HYP]
;     flag 10, indicates [SIN], otherwise [COS]
;     flag 14, indicates inverse operation (CSC and COS, aka SIN^-1 and COS^-1)
;
; Reference:
;     https://en.wikipedia.org/wiki/Complex_number#Complex_analysis

270     LBL 28          ; [CSC(Z)] operation
271     SF 14

272     LBL 23          ; [SIN(Z)] operation
273     SF 10

274     LBL 29          ; [SEC(Z)] operation
275     FC? 10
276     SF 14

277     LBL 24          ; [COS(Z)] operation

278     XEQ 09          ; push (x + y.j) onto complex stack and update LASTZ
279     FS?C 03         ; ARC?
280     GTO 13
281     XEQ 00          ; calculate cos/sin/cosh/sinh
282     ST* T
283     RDN
284     *
285     CHS
286     FC? 04          ; HYP?
287     FS? 10          ; SIN?
288     CHS
289     FC?C 04         ; HYP?
290     FC? 10          ; COS?
291     X<>Y
292     FS?C 14         ; inverse operation?
293     XEQ 31          ;   then compute Z1 = 1 / Z1
294     GTO 03          ; copy (x + y.j) to complex stack, and return

; COMPLEX TANGENT AND COTANGENT, doesn't support ARC or HYP variations
;
;     tan(x + j.y) = sin(2.x)  / ( cosh(2.y) + cos(2.x) ) +
;                    sinh(2.y) / ( cosh(2.y) + cos(2.x) ) . j
;     cot(Z) = 1 / tan(Z)
;
; Flags used:
;     F03 indicates [ARC]
;     F04 indicates [HYP]
;     F14 indicates inverse operation (COT aka TAN^-1]

295     LBL 30          ; [COT(Z)] operation
296     SF 14
297     LBL 25          ; [TAN(Z)] operation
298     XEQ 09
299     FS?C 03         ; ARC?
300     GTO 14
301     2               ; multiply x and y by 2
302     ST* Z
303     *
304     XEQ 00          ; calculate cos/sin/cosh/sinh (F04=0, F10=0)
305     R^
306     +
307     ST/ Z
308     /               ; answers is now as (x + y.j)
309     FS?C 04
310     X<>Y
311     FS?C 14         ; inverse operation?
312     XEQ 31          ;   then compute Z1 = 1 / Z1
313     GTO 03          ; copy (x + y.j) to complex stack, and return

; TRIGONOMIC OPERATIONS HELPER subroutine
;
; Call with:
;   complex number on the stack as (x + y.j).
;   F04 indicates [HYP]
;   F10 indicates [SIN], otherwise [COS]
;
; This operation returns:
;
;           | [HYP]    [HYP]
;           | [SIN]    [COS]    [SIN]   [COS]
;     ------+----------------------------------
; re  y-reg | sin(y)   sin(y)   sin(x)  sin(x)
; re  z-reg | cosh(x)  sinh(x)  cosh(y) sinh(y)
;     ------+----------------------------------
; im  x-reg | cos(y)   cos(y)   cos(x)  cos(x)
; im  t-reg | sinh(x)  cosh(x)  sinh(y) cosh(y)
;
;            x     -x      2.x
;           e  -  e       e    -  1                    1
; sinh(x) = ---------  =  ---------  ,    csch(x) = -------
;                              x                    sinh(x)
;              2            2.e
;
;            x     -x      2.x
;           e  +  e       e    +  1                   1
; cosh(x) = ---------  =  ---------  ,    sech(x) = -------
;                              x                    cosh(x)
;               2           2.e
; Reference:
;     https://en.wikipedia.org/wiki/Hyperbolic_trig_operations

314     LBL 00
315     FS? 04          ; HYP?
316     X<>Y            ;
317     2
318     RCL Z
319     ST+ X
320     E^X-1
321     ST+ Y
322     R^
323     E^X
324     ST+ X
325     ST/ Z
326     /
327     FS? 10          ; SIN? (not COS)
328     X<>Y            ;
329     R^
330     SIN
331     R^
332     COS
333     RTN

; INVERSE TRIGONOMIC OPERATIONS, ARC and HYP-ARC
;
;     arcsin(x + y.j) = arcsin(b) + j.sign(y).ln(a + sqrt(a^2-1)
;     arccos(x + y.j) = arccos(b) - j.sign(y).ln(a + sqrt(a^2-1))
;     arccsc(Z)  =    arcsin(1/Z)
;     arcsec(Z)  =    arccos(1/Z)
;     arcsinh(Z) = -j.arcsin(j.Z)
;     arccosh(Z) =  j.arccos(Z)
;     arccsch(Z) =  j.arccsc(j.Z)
;     arcsech(Z) =  j.arcsec(Z)
;   where
;     a = ( sqrt( (x+1)^2 + y^2 ) + sqrt( (x-1)^2 + y^2) ) / 2
;     b = ( sqrt( (x+1)^2 + y^2 ) - sqrt( (x-1)^2 + y^2) ) / 2
;     sign(y) returns 1 when y>=0, othewise returns -1
;
; Flags used:
;     F04 indicates [HYP]
;     F10 indicates [SIN], otherwise [COS]
;     F14 indicates inverse operation (CSC and COS, aka SIN^-1 and COS^-1]
;
; Reference:
;     https://en.wikipedia.org/wiki/Inverse_trigonometric_operation

334     LBL 13
335     FS?C 14         ; inverse operation?
336     XEQ 31          ; compute Z1 = 1 / Z1
337     FS? 04          ; HYP flag
338     FC? 10
339     GTO 00
340     X<>Y
341     CHS
342     LBL 00          ; entered with Z1 as (x + y.j)
343     RCL X
344      E
345     ST- Z
346     +
347     X^2
348     X<>Y
349     X^2
350     X<> Z
351     X^2
352     ST+ Z
353     +
354     SQRT
355     STO Z
356     X<>Y
357     SQRT
358     ST- Z
359     +
360     2
361     ST/ Z
362     /               ; X holds a;  Y holds b; Z holds y
363     ENTER^
364     X^2
365     SIGN
366     ST- L
367     X<> L
368     SQRT
369     +
370     LN
371     R^
372     SIGN
373     *
374     FC? 10
375     CHS
376     X<>Y
377     FS? 10
378     ASIN
379     FC? 10
380     ACOS            ; Z1 (x + y.j) now holds the answer to simple ARCSIN or ARCCOS
381     XEQ 61
382     FC?C 04
383     GTO 03          ; we're done for non-HYP operations;  copy to complex stack, and return
384     FS? 10          ; for HYP or inverse-HYP operation, there is a little more
385     CHS
386     X<>Y
387     FC? 10
388     CHS
389     GTO 03          ; copy (x + y.j) to complex stack, and return

390     LBL 14
391     FS?C 14
392     XEQ 31
393     FS? 04
394     X<>Y
395     FS? 04
396     CHS
397      E
398     ENTER^
399     R^
400     ST- Z
401     +
402     R^
403     ST/ Z
404     /
405     STO Z
406     X^2
407     RCL Y
408     X^2
409     SIGN
410     ST+ Y
411     ST+ L
412     X<> L
413     /
414     LN
415     4
416     /
417     PI
418     R^
419     ATAN
420     XEQ 61
421     R^
422     ATAN
423     XEQ 61
424     +
425     -
426     2
427     /
428     FS? 04
429     CHS
430     FS?C 04
431     X<>Y
432     GTO 03

; VIEW COMPLEX NUMBER Zn

433     LBL 89          ; [VIEWZn] operation
434     RCL 00
435     X<Y?            ; if n > complex stack depth, recall Z1 and return
436     GTO 14          ; get (x + y.j) from complex stack, and return
437     SIGN
438     +
439     ST+ X
440     SIGN
441     CLX
442     RCL IND L       ; recall imaginary part of Zn
443     DSE L
444     RCL IND L       ; recall real part of Zn
445     FS? 00          ; if notation selected
446     XEQ 33          ;   then convert to polar notation
447     XEQ 10          ; display complex number (x + y.j)
448     PSE             ; pause, but allow number input
449     GTO 14          ; get (x + y.j) from complex stack, and return

; EXCHANGE COMPLEX STACK REGISTERS

450     LBL 21          ; [Z1<>Z2] operation
451     XEQ 04          ; push (x + y.j) onto complex stack
452     2
453     LBL 26          ; [Z1<>Zn] operation
454     RCL 00
455     X<Y?
456     GTO 14          ; get (x + y.j) from complex stack, and return
457     X<>Y
458     ST+ X
459     1.003002        ; X register holds 1.003002; Y register holds 2.n,
460     CF 02           ; no "no stack lift"
461     GTO 00          ; perform register swap and return

; COMPLEX STACK ROLL, up or down
;
; Does not roll around
; Uses block rotate trick form PPC Journal V10N3p15a

462     LBL 22          ; [CR^] operation
463     SF 10
464     LBL 27          ; [CRDN] operation

465     XEQ 04          ; push (x + y.j) onto complex stack
466     3
467     ENTER^
468     5
469     FS? 10          ; CR^?
470     X<>Y
471     RCL 00          ; complex stack depth (csdepth)
472     DSE X
473     ST+ X
474      E3
475     ST/ Z
476     X^2
477     /
478     +               ; for CRDN, X holds 0.005 + 2.(csdepth-1)/1E6; Y holds 3
479     LBL 00
480     +
481     REGSWAP         ; register swap for sss.dddnnn

; GET (x + y.j) FROM COMPLEX STACK

482     LBL 14
483     RCL 04          ; imaginary part of Z1
484     RCL 03          ; real part of Z1
485     RTN

; COMPLEX 1/Z1
;
; Formula:
;      1             x                 y
;    -------  =  ---------  -  j . ---------
;    x + y.j     x^2 + y^2         x^2 + y^2
;
; doesn't disturb Z and T
486     LBL 31
487     X^2
488     X<>Y
489     STO M
490     ST* X
491     ST+ Y
492     X<> M
493     CHS
494     X<>Y
495     ST/ Y
496     ST/ L
497     X<> L
498     RTN

; GET TWO OPERANDS as (x + j.y) and (z + j.t), 1st operand is from keyboard, otherwise from Z1
; stack management subroutine for operations with two complex number operands

499     LBL 07
500     XEQ 06          ; get one operand (x + y.j)
501     FC?C 02
502     FC? 22          ; if "no stack lift" or no "input from keyboard"
503     XEQ 12          ;   then move complex stack down
504     RCL 04          ; get operand (z + t.j) from (what is now) Z1 on the complex stack
505     RCL 03
506     R^
507     R^
508     GTO 00

; GET OPERAND, as (x + j.y) and UPDATE LASTZ
; stack management subroutine for operations with one complex and one real number operand

509     LBL 08          ; called with n in register X
510     FS?C 02         ; if "no stack lift"
511     XEQ 12          ;   then move complex stack dow
512     RCL 04          ; copy Z1 to LASTZ
513     STO 02
514     RCL 03
515     STO 01
516     RCL Z           ; n in register X, complex operand as (y + z.j)
517     RTN

; PUSH (x + y.j) ONTO COMPLEX STACK and UPDATE LASTZ
; stack management subroutine for operations with one complex number operand

518     LBL 09
519     XEQ 04          ; push (x + y.j) onto complex stack
520     LBL 00
521     STO 01          ; copy to LASTZ1
522     X<>Y
523     STO 02
524     X<>Y
525     RTN

; COMPLEX ALPHA/ALPHA ROUTINE

526     LBL 04          ; [CVIEW] key code [ALPHA]
527     FC?C 02
528     FC? 22
529     FS? 30          ; if both "no stack lift" and "keyboard input"
530     XEQ 11          ;   then move complex stack up, Z1 > Z2 > Z3 > Z4 > Z5 > Z6

531     XEQ 06          ; get one operand (x + y.j)
532     STO 03
533     X<>Y
534     STO 04
535     X<>Y
536     RTN

; GET ONE OPERAND (x + y.j) from keyboard input, otherwise from Z1 on the complex stack 

537     LBL 06
538     FS? 00          ; if keyboard input in polar mode, then convert it to Rectangular
539     FC? 22
540     FS? 30
541     P-R
542     FS? 22          ; keyboard input?
543     RTN
544     RCL 04
545     RCL 03
546     RTN

; DISPLAY, in rectangular mode "x + y.j", or in polar mode "x <y" with the angle in degrees
; subroutine that views both parts of the complex number in X and Y in condensed format
; in the display, without disturbing Z, T or the display mode.  ENG 2 was chosen because, to
; display complex numbers in analog electronics.

547     LBL 10          ; Z1 = x + j.y
548     SIGN            ; save X in LASTX
549     RDN
550     CLA
551     RCLFLAG         ; save flags
552     FIX 2
553     ARCL L
554     RDN
555     FS? 00          ; in Rectangular notation append real part,
556     GTO 00          ; and '+' sign if imaginary part is positive
557     X<0?
558     GTO 00
559     >"+"
560     LBL 00
561     R^
562     FS? 00          ; for Polar notation, append angle ('<') sign
563     >"<"
564     ARCL Y
565     FC? 00
566     >"J"            ; in Rectangular notation append 'J' char
567     AVIEW
568     STOFLAG         ; restore flags
569     X<> L           ; restore X from LASTX
570     RTN

; ROLL THE COMPLEX STACK, by one position up or down
; subroutine to shift the stack up or down by one complex register
;
; Does not roll around like RDN or R^
; Does not enter or retrieve data.
;
; Example:
;                  | stack lift | stack drop
;    --------------+------------+------------
;    Z6    6 + 6j  |   5 + 5j   |   6 + 6j
;    Z5    5 + 5j  |   4 + 4j   |   6 + 6j
;    Z4    4 + 4j  |   3 + 3j   |   5 + 5j
;    Z3    3 + 3j  |   2 + 2j   |   4 + 4j
;    Z2    2 + 2j  |   1 + 1j   |   3 + 3j
;    Z1    1 + 1j  |   1 + 1j   |   2 + 2j

571     LBL 11          ; stack lift, Z1 > Z2 > Z3 > Z4 > Z5 > Z6
572     3.005           ;   typically when a new number is moved into Z1
573     GTO 00
574     LBL 12          ; stack drop, Z1 < Z2 < Z3 < Z4 < Z5 < Z6
575     5.003           ;   typically when a operation combines Z1 and Z2
576     LBL 00
577     SIGN
578     RCL 00          ; complex stack depth (csdepth)
579     X<>Y
580     ST- Y
581     RDN
582     ST+ X
583      E6
584     ST/ Y
585     X<> L
586     +               ; register X is in sss.dddnnn format
587     REGMOVE         ; copies 2*(csdepth-1) registers from sss to ddd
588     RDN
589     RTN

590     LBL 33
591     R-P
592     LBL 61
593     R^
594     STO N
595     R^
596     STO M
597     RDN
598     X<> Z
599     PI
600     +
601     PI
602     +
603     RCL 15
604     X<>Y
605     LBL 38
606     X<Y?
607     GTO 00
608     PI
609     -
610     PI
611     -
612     GTO 38

613     LBL 00
614     RCL Z
615     RCL N
616     RCL M
617     R^
618     R^
619     RTN

; ADJUST BRANCH CUT

620     LBL 35		; &#91;BCUT&#93;
621     RCL 15
622     "BC<="
623     ARCL X
624     >"?"
625     PROMPT
626     STO 15
627     R^
628     R^
629     END

References

[1] COMPLEX ARITHMETIC
Frans de Vries, May 1985
PPC Journal V12N5, page 4-9
[2] Complex Arithmetic in Extended Memory for HP-41cv/cx Coert Vonk, 1986
[3] Branch Cut Wolfram.com

Leave a Reply

Your email address will not be published. Required fields are marked *

 

This site uses Akismet to reduce spam. Learn how your comment data is processed.