Shows the math of a underdamped RLC low pass filter. Visualizes the poles in the Laplace domain. The step and frequency response. Part of the article RLC Low-pass Filter.\(\)
Complex Poles (underdamped case)
For complex conjugate poles, the transfer function can be written as below. Given that \(\zeta\lt1\), the argument of the square root in the poles will be negative. Multiply this argument with \(-j^2\) to highlight the imaginary part apart.
Split the conjugate poles in their real and imaginary parts by defining the poles from equation \(\eqref{eq:case3a_transferpoles}\) as \(p,\,p^*\equiv -\sigma\pm j\omega_d\)
This equation indicates that the conjugate poles \(p, p^*\) lay in the left half of the \(s\)-plane. The length of the line segment from the origin to pole \(p\) represents the natural frequency \(\omega_n\) and the angle of the imaginary axis with that line is \(\arcsin\) of the attenuation \(\zeta\). [MIT-me]
\(s\)-plane for underdamped case
Unit Step Response
Multiplication of the Laplace transform of the unit step function, \(\Gamma(s)\), with the transfer function \(\eqref{eq:case3a_transferpoles}\) gives the unit step response \(Y(s)\).
The constants \(c_1\) and \(c_2\) are complex conjugates of each other since they are equivalent except for the sign on the imaginary part. To highlight this, substitute the values for the poles from \(\eqref{eq:sigmaomegad}\) and write these constants in polar notation
The unit step response \(y(t)\) follows from the inverse Laplace transform of \(\eqref{eq:case3a_heaviside}\), substituting \(c_{0,1,2}\) from \(\eqref{eq:case3a_constants}\), \(\eqref{eq:case3a_c2polar}\) and \(\eqref{eq:case3a_c3polar}\).
Apply the Euler identify for cosine, and reference \(|p|\) and \(\varphi\) from equation \(\eqref{eq:case3a_c2polar}\) and \(\eqref{eq:case3a_c3polar}\), \(\sigma\) and \(\omega_d\) from equation \(\eqref{eq:sigmaomegad}\) and \(\zeta\) and \(\omega_n\) from \(\eqref{eq:case3a_transferpoles}\)
The graph shows the response for different values of \(R\). This underdamped circuit oscillates, with the amplitude exceeding that of the input (\(1\)).
Step response for underdamped case
For the extreme case, where \(R=0\), the response becomes \(\left(1-cos(\omega_n t)\right)\gamma(t)\), oscillating with an amplitude reaching twice the input (\(1\)).
Frequency Response
The frequency response \(y_{ss}(t)\) is defined as the steady state response to a sinusoidal input signal
$$
u(t)=\sin(\omega t)\,\gamma(t)
$$
We can rewrite the transfer functionby substituting the poles from \(\eqref{eq:sigmaomegad}\)
This transfer function with the poles at \(p\) and \(p^\ast\), evaluated for \(s=j\omega\) can be visualized with vectors from the poles to \(j\omega\).
Transfer function evaluated at \(s=j\omega\) for underdamped case1a_constants
Substitute \(s=j\omega\) into the transfer function \(\eqref{eq:case3a_newhs}\)
The graph shows the magnitude of the output for different values of \(R\). The magnitude of the frequency response demonstrates resonant behavior. Note the voltage amplification around the natural frequency \(\omega_n\) .
Bode magnitude for underdamped case
The corresponding Nyquist plot shows that the system gets less stable as the resistor value decreases
We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept”, you consent to the use of ALL the cookies.
This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
Cookie
Duration
Description
cookielawinfo-checkbox-analytics
11 months
This cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checkbox-functional
11 months
The cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checkbox-necessary
11 months
This cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-others
11 months
This cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-performance
11 months
This cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
viewed_cookie_policy
11 months
The cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.